

Future perspectives of implant prosthetics

Asbjørn Jokstad University of Toronto, Canada & University of Tromsø, Norway

Microprocessor performance

Clock speed (MHz)

<1 1971 Intel4004/ Texas I	nstrument TMS100
----------------------------	------------------

1 1974 Motorola/Intel8008/ZilogZ80 8bit.Cp/M (Commodore 64, Apple II)

4.77 1976/8 Intel 8086 16bit; (Compaq, IBM PC); Intel 8088 (IBM (1981))

8 1978 Motorola 68000 (Macintosh128k, Amiga1000)

6 – 25 1982-85 Intel 80286 DOS(1981); (IBM-AT (1984))

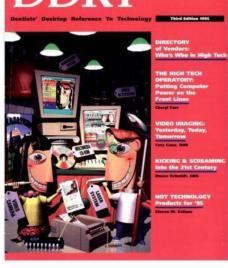
12 – 40 1985-90 Intel 80386 <u>32bit</u>; Motorola 68040 (Macintosh, Amiga, NeXT))

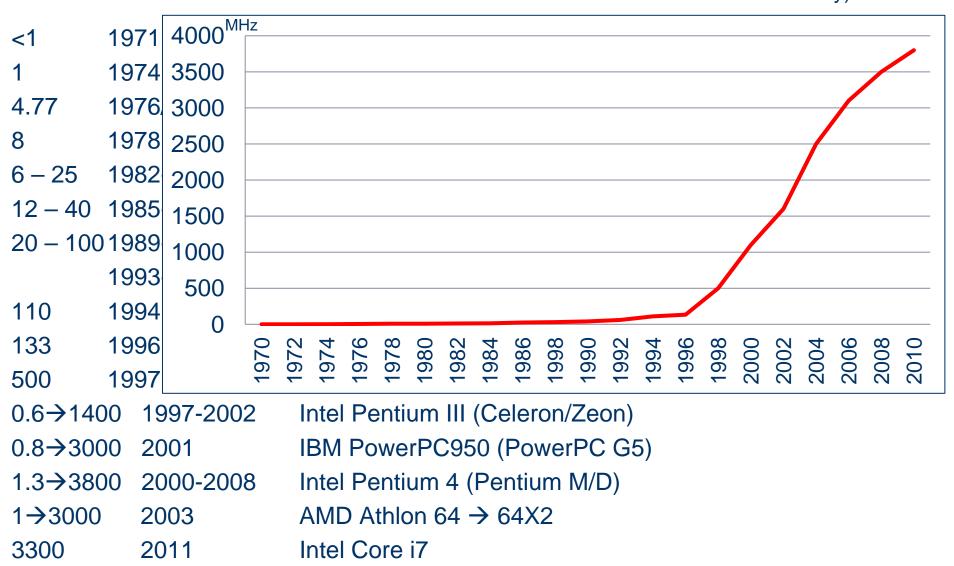
20 – 100 1989-94 Intel i486; Cyrix

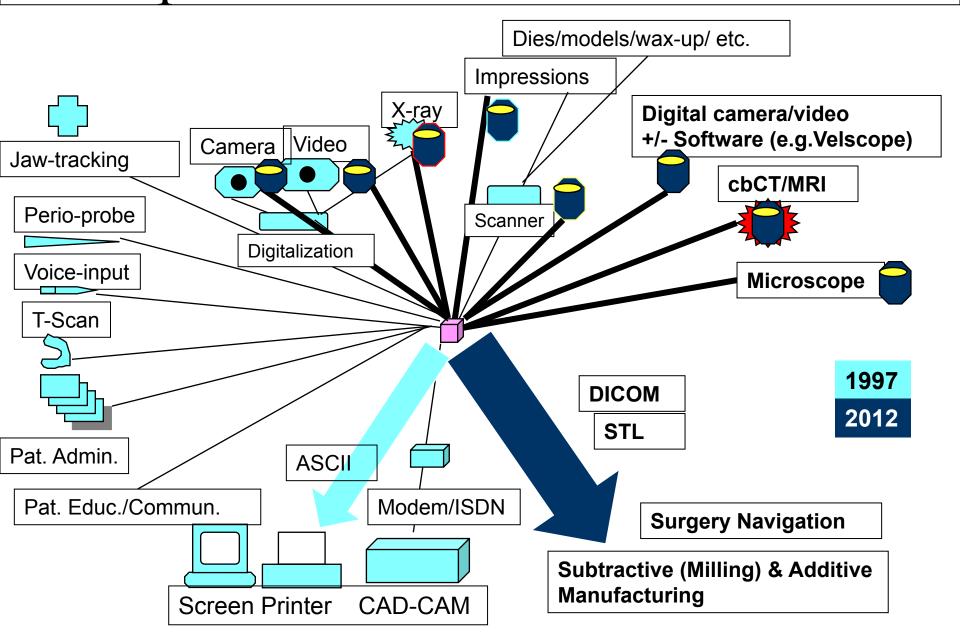
1993-95 Intel Pentium, Pentium MMX → Pentium Pro

110 1994 IBM PowerPC 601 (Power Macintosh 8100)

133 1996 AMD K5


500 1997 IBM PowerPC 750 (iMac)




From: http://www.old-computers.com/museum

Microprocessor performance

(The clock rate is no longer considered as a reliable benchmark since there are different instruction set architectures & different microarchitectures – MIPS more common today)

Microprosessor uses in the dental clinic

Computer- aid/-assistance in dentistry


Engineering & Production	Teaching
Computer-aided design "CAD"	Computer assisted instruction
Computer-aided drafting	Computer assisted/based
Computer-aided engineering	learning
Computer-aided	Computer-assisted assessment
manufacturing "CAM"	
Computer-aided quality	Communication
Computer-aided maintenance	Computer-assisted personal interviewing
Health Care	Computer-assisted telephone
Computer-assisted detection	interviewing
Computer-aided diagnosis Computer-aided tomography	Computer-assisted reporting

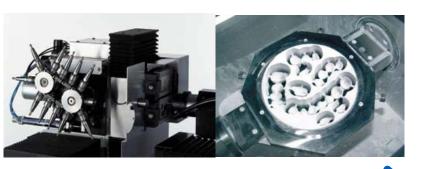
Computer-assisted surgery

Computer-aided shade-matching

Dental Clinic

The diffusion of innovations

- People have different levels of readiness for adopting new innovations
- Clinicians can be classified into five groups
- The characteristics of a product affect overall adoption.


The early adopters ~10 years ago

cad-esthetics® /DECIM
Cercon smart ceramics®
Cerec® 1→3 / InLab®
DCS Precident®
Digident®
KaVo Everest®
Lava® system

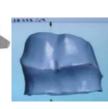
"Closed systems"

Compact unit: Digital acquisition + Design-software + Manufacturer-software + CNC-Milling (Al₂O₃ -ceramic)

(Non-digital alternative: Copy milling (e.g. Celay)

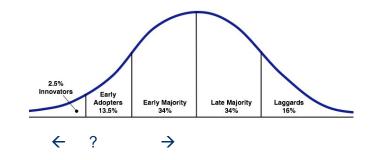
Device **Applications Materials**

CAD-CAM technologies



Scanning

Technology Acquisition Scan Items Data export format(s)



Manufacture Software

Data import/export formats/ formatting Manufacturing applications

Design Software

Data import/export formats / formatting Design applications

INNOVATIONS IN SCANNING DEVICES

Scanning - Parameters

Technology

Acquisition

Scan Items

Optical-white light

Intra-oral

Antagonist

Optical-blue light

Extra-oral

Bite registration

Optical-stripe light

Intra-& extra-oral

Die

Optical-laser/video

Full arch

Optical-laser-triangulate **Scan export format**

Implant Abutment

Optical-laser-confocal

Open format (STL, DICOM)

Mechanico-electric

Closed

2500

1000

Model

(laser-adjusted)

Prostheses

Wax-up

Conoscopic Holography

ISO-standard(?)

Intra oral scanning

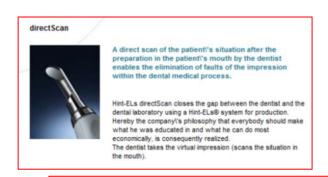
Improved
Workflow
Lava
Chairside Oral Scanner C.O.S.

LAVA COS (2008)

Smileydental sin kanal Aborner Alle Opplastinger Favoritter

CADENT

CADENT


System Overview

Cadent Itero (2006)

Laser Triangulation

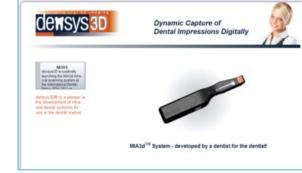
Confocal light

Per 2010; 4 systems (+E4D)

Hint-Els GmbH (2009)

Intra oral scanning

LAVA COS


Cadent Itero

A direct scan of the patient's situation after the preparation in the patient's mouth by the dentist enables the elimination of faults of the impression within the dental medical process.

Hint-ELs directScan closes the gap between the dentist and the dental laboratory using a Hint-ELs® system for production. Hereby the company's philosophy that everybody should make what he was educated in and what he can do most economically, is consequently realized. The dentist takes the virtual impression (scans the situation in

Hint-Els GmbH Per 2010/2011: 4 additional systems introduced

Densys3D: MIA3d

Intellidenta/ Clon3D: IODIS



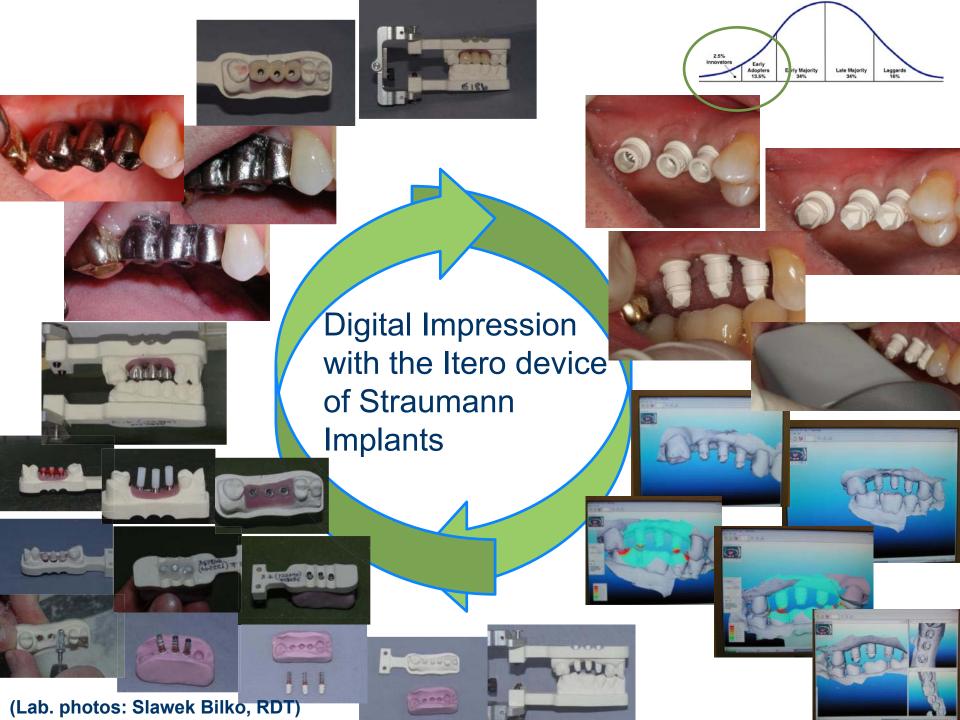
MHT: Cyrtina/3DProgress

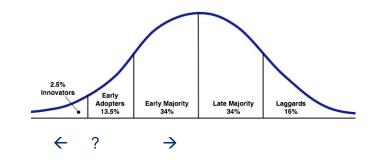
3Shape: TRIOS /(Dentaswiss)

Intra oral scanning

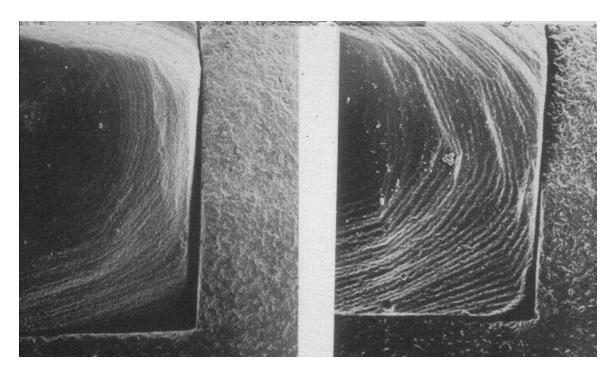
Per 2012: 3 additional systems introduced

Zfx / Intrascan


BLUESCAN-I INTRAORAL 3D SCANNER



Bluescan /a.tron3D


IOS: Fastscan

INNOVATIONS IN DESIGN & MANUFACTURER SOFTWARE

<u>The sum of Hardware + Software</u> <u>Improvements</u>

CEREC 1 (~1986)

CEREC 2 (~1992)

<u>Design / Manufacturer Software</u> Parameters

Import format(s)

Open

Scanner-CAD bundled (Closed)

Export format(s)

Open (e.g. STL)

CAD-CAM bundled (Closed)

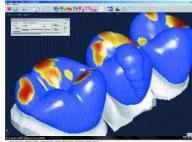
Applications

Wax-ups / temporaries

Inlays / Onlays

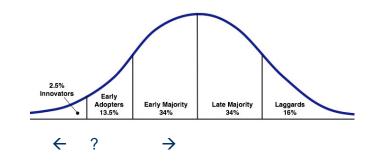
Single-unit copings

Crowns / monolithic crowns


 $3 \rightarrow 16u / 4 \rightarrow 7cm - FDPs$


Removable Dental Prosthesis (Partial / Full)

Implant "customised" abutments
Implant meso-structures
Implant-Bars



INNOVATIONS IN ADDITIVE AND SUBTRACTIVE MANUFACTURING CONCEPTS

Manufacturing Parameters

Device - additive

3D Laser sintering

3D Printing

Device - subtractive

3/3.5/4/5/6-axis-milling

Applications

Wax-ups

In-/Onlays

Single-unit copings

Crowns

Monolithic Crowns

 $3 \rightarrow 16$ unit(/4 $\rightarrow 7$ cm)-FDPs

Custom abutments

Implant-Bars

implant-suprastructure-Meso-structures

Partial Removable Prosthesis

Full Removable Prosthesis

Materials

Base alloys
Gold alloys

Non-precious alloys

Titanium / -alloys

Composite resins
Cast Resins / Wax

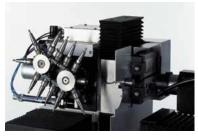
PMMA

In-Ceram (Porous Al₂O₃)

Al₂O₃ (sintered)

Feldtspathic

 $Li_2Si_2O_5$

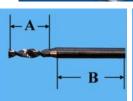

ZrO₂ (porous/green state)

ZrO₂ (pre-sintered state)

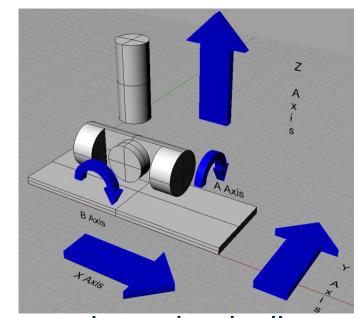
ZrO₂ (sintered)

ZrO₂ (sintered & HIP-ed state)

with / without Sintering-furnace



Milling in Dentistry – From 3 axes → 5 → 5+5 milling axes

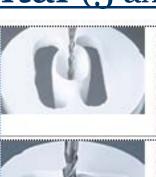


Milling machines today are manually operated, mechanically automated, or digitally automated via <u>computer numerical</u> <u>control</u> (CNC) re. e.g. torques, feed-rate, nature of cutters, etc..

Software algorithm compensatation for errors introduced during milling processes

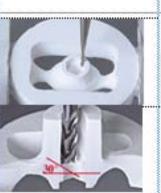
Often based on finite-element-modeling calculations

- Geometrical compensation
- Force compensation
- Thermal compensation
- Errors in the final dimensions of the machined part are determined by the accuracy with which the <u>commanded tool trajectory</u> is followed, combined with any <u>deflections</u> of the tool, parts/fixture, or machine caused by the cutting forces
- The effect of geometric errors in the machine structure is determined by the sophistication of the <u>error compensation algorithms</u>
- The cutting tools' trajectories are subject to <u>performance of the axis</u> drives and the <u>quality of the control algorithms</u>



Cutters for dental (5 axis) milling

milling)


Milling Bur 1 XXL Used to mill presintered ziscoxia. (abutment)

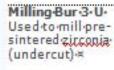
Milling Bur 2 A
Used to mill presintered sixcopla
(abutment)

Milling Bur 1,5 A
Used to mill presintered sisconia
(abutment)

Milling Bur 2W30 Used to mill screw seats


Milling Bur 0,6 A

Used to mill pre-


sintered zispopia, (abutment)

Milling Bur 3 C Used to mill presintered zirconia (2° coned flank)

Milling-Bur-1-XL-Used-to-mill-presintered-zirconia-(precise-milling-ofdeep)-¤

Milling-Bur-2-U-Used to mill presintered zirconia-(undercut) ≠

Round-Head-Bur-2-K-Rapid-and-easysmoothing-ofsurfaces-andundercuts×

Milling-Bur-0,3-C-Used-to-mill-occlusal fissures ≈

Milling-Bur-2-UR-Used-to-millundercuts =

Milling-Bur-2,5-UR-Used-to-millundercuts#

From: ZirconZahn

Emerging Additive manufacturing technologies

E.g.: 3D printing / Additive (freeform) fabrication / Layered manufacturing / Rapid prototyping/-manufacturing / Robocasting / Solid freeform fabrication (SFF)

3D geometries physically constructed directly from 3D CAD.

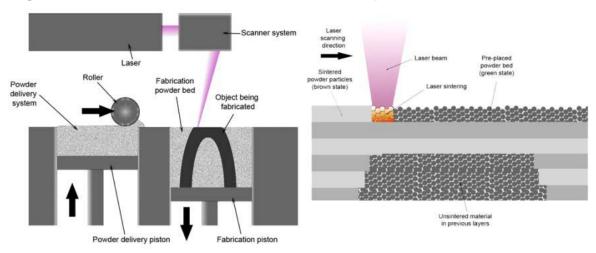
Process introduced in the mid-1980s. Original name was rapid prototyping since the first use was to make prototypes of parts without having to invest the time or resources to develop tooling or other traditional methods.

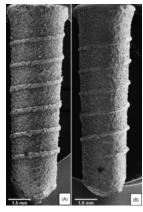
As the process and quality controls have evolved additive manufacturing has grown to include production applications

Comparison of solid freeform fabrications methods

Comparison of solid free of the label cations methods					
Method Accuracy (mm/mm) ^[6] Maximum pa		Maximum part size (mm) ^[7]	Process time (hh:mm) ^[8]		
Fused deposition modelling	0.005	254 x 254 x 254 (Stratasys)[9]	12:39		
Laminated object modeling	0.01	812 x 558 x 508 (Cubic Technologies)	11:02		
Selective laser sintering	0.005	381 x 330 x 457 (3D Systems)	4:55		
Solid ground curing	0.006	508 x 355 x 508 (Cubital)	11:21		
Stereolithography	0.003	990 x 787 x 508 (Sony)	7:03		
Robocasting	0.1 (Fab@Home ៤)	240 x 240 X 240 (Fab@Home ₺)	TBD		

From: wikipedia.com

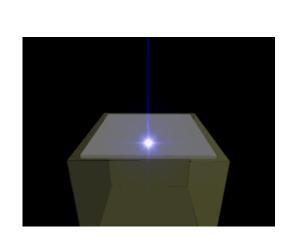

Additive manufacturing: Selective Laser Sintering (SLS)

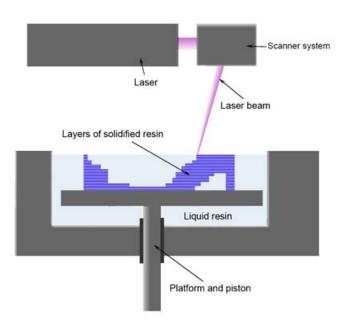

A high power laser (e.g., CO2) fuse small particles of plastic, metal, ceramic, or glass powders into a desired 3-dimensional shape.

The laser selectively fuses powdered material by scanning crosssections generated from a 3-D digital description of the part on the surface of a powder bed.

After each cross-section is scanned, the powder bed is lowered by one layer thickness, a new layer of material is applied on top, and the process is repeated until the part is completed.

SLS does not require support structures due to the fact that the part being constructed is surrounded by unsintered powder at all times

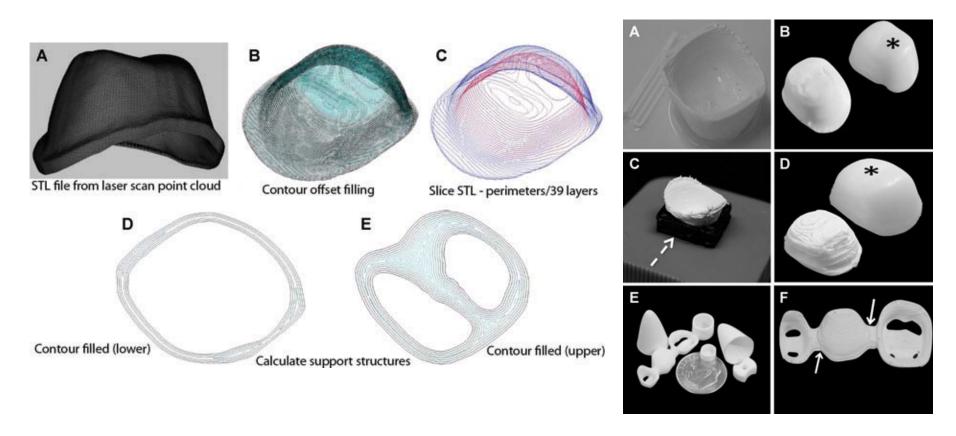


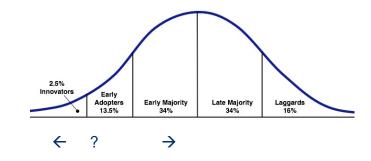

From: Traini ea Dent Mater 2008

Additive manufacturing: Stereolithography (SL / SLA)

The method and apparatus make solid objects by successively "printing" thin layers of an UV-curable material one on top of the other.

The concentrated UV-light-beam focuses onto the surface of a vat filled with liquid photopolymer. The light beam draws the object onto the surface of the liquid layer by layer, causing polymerization or cross-linking to give a solid.




Additive manufacturing: Robocasting

A material is deposited at room-temperature material -- in the form of a viscous gel or ceramic slurry -- from a robotically controlled syringe or extrusion head.

The material hardens or cures after deposition

From: Silva ea. NYU J Prosthodont 2011

INNOVATIONS IN RESTORATIVE MATERIALS

Zirconia milling substrates are not all alike!

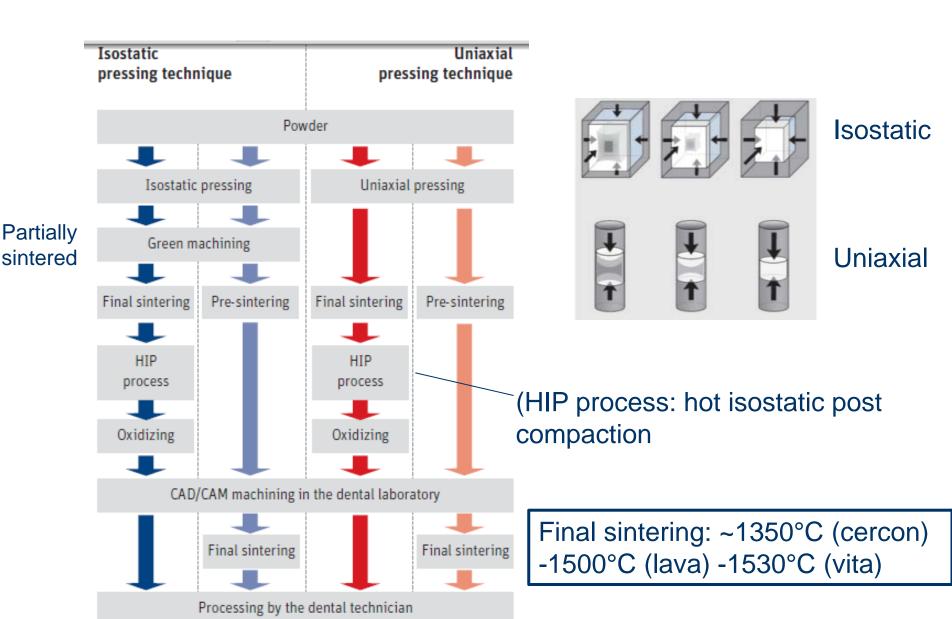
TZP*	ZrO_2 / Y_2O_3	95 / 5
TZP-A	$ZrO_2 / Y_2O_3 / Al_2O_3$	~95 / ~5 / 0.25
FSZ	ZrO_2 / Y_2O_3	90 / 10
PSZ	ZrO_2 / MgO	96.5 / 3.5

ATZ $ZrO_{2} / Al_{2}O_{3} / Y_{2}O_{3}$ 76 / 20 / 4

Great variations regarding:

Hardness Fracture resistance
Tension strength Elasticity module
Sintering time

Grain size Opacity


%

Who do you believe checks: Veneering ceramic compatibility? Optimal core-veneer layering thickness?

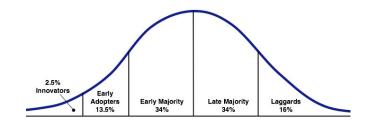
^{*}TZP=(tetragonal zirconia polycrystals)

Zirconia milling substrates are not all alike!

Prefabricated blanks for supra-construction

examples

ø99 mm x 10 - 25mm


DCS (Hip)

KaVo Everest

E4D

Rapid Developments combined with compressed learning curves of using

- scanning technologies
- design ("CAD") software
- manufacture ("CAM") software
- additive/subtractive manufacture technologies
- restorative material modifications

give rise to a new "bundle package industry"

Patient

Dentist

Dental Technician

Prosthesis designing

Biomaterial selection

Fabrication process

Patient

Dentist

Dental Technician

Prosthesis designing

Biomaterial selection

Fabrication process

Prefabricated blanks for customised implant abutments

ESSENTIAL:

- •It's the **Doctor's responsibility** to maintaining the control of and overview of the chain of materials and fabrication methods
- Fabrication processes and material choices may be incompatible
- •Stay with a validated concept or upgrade your knowledge about modern material properties as well as modern additive & subtractive manufacturing methods

OUR DENTAL TEAM PARTNERS – A CONCERN

EN ESPAÑOL

OCCUPATIONAL OUTLOOK HANDBOOK

Search Handbook

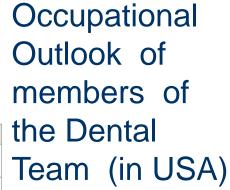
FONT SIZE: The PRINTER-FRIENDLY

Go

Healthcare >

Dentists

Summary What They Do Work Environment How to Become One Pay Job Outlook Similar Occupations Contacts for More Info


Summary

Quick Facts: Dentists				
2010 Median Pay 🕡	\$146,920 per year \$70.64 per hour			
Entry-Level Education 🕡	Doctoral or professional degree			
Work Experience in a Related Occupation 🕡	None			
On-the-job Training 🕡	Internship/residency			
Number of Jobs, 2010 🕡	155,700			
Job Outlook, 2010-20 🕡	21% (Faster than average)			
Employment Change, 2010-20 🕡	32,200			

Quick Facts: Dentists				
2010 Median Pay 🕡	\$146,920 per year \$70.64 per hour			
Entry-Level Education 🕡	Doctoral or professional degree			
Work Experience in a Related Occupation 🔞	None			
On-the-job Training 🕡	Internship/residency			
Number of Jobs, 2010 🕜	155,700			
Job Outlook, 2010-20 🕡	21% (Faster than average)			
Employment Change, 2010-20 🕡	32,200			

Quick Facts: Dental Hygienists				
2010 Median Pay 🔞	\$68,250 per year \$32.81 per hour			
Entry-Level Education 🕜	Associate's degree			
Work Experience in a Related Occupation 🔞	None			
On-the-job Training 🕡	None			
Number of Jobs, 2010 🕡	181,800			
Job Outlook, 2010-20 🕡	38% (Much faster than average)			
Employment Change, 2010-20 🕡	68,500			

Quick Facts: Dental Assistants				
2010 Median Pay 🕜	\$33,470 per year \$16.09 per hour			
Entry-Level Education 🕡	Postsecondary non-degree award			
Work Experience in a Related Occupation 🕡	None			
On-the-job Training 🕡	None			
Number of Jobs, 2010 🕡	297,200			
Job Outlook, 2010-20 🕡	31% (Much faster than average)			
Employment Change, 2010-20 🕡	91,600			

Quick Facts: Dental Laboratory Technicians				
2010 Median Pay 🕡	\$35,140 per year \$16.90 per hour			
Entry-Level Education 🕜	High school diploma or equivalent			
Work Experience in a Related Occupation 🕡	None			
On-the-job Training 🕡	Moderate-term on-the-job training			
Number of Jobs, 2010 🕡	40,900			
Job Outlook, 2010-20 🕡	1% (Little or no change)			
Employment Change, 2010-20 🕡	300			

Source: U.S. Department
of Labor, Bureau of Labor
Statistics, Occupational
Outlook Handbook, 201213 Edition

About this section @

Summary

What They Do

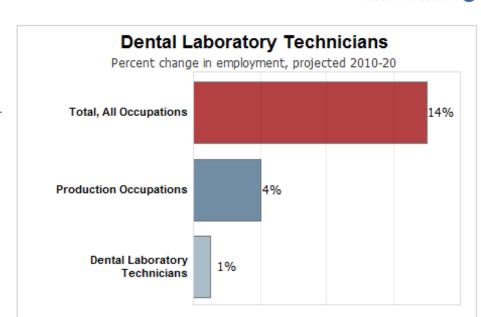
Work Environment

How to Become One

Pay

Job Outlook

Similar Occupations


Contacts for More Info

Job Outlook

Employment of dental laboratory technicians is expected to experience little or no change from 2010 to 2020.

As cosmetic prosthetics, such as veneers and crowns, become less expensive, there should be an increase in demand for these appliances. Accidents and poor oral health, which can cause damage and loss of teeth, will continue to create a need for dental laboratory technician services. Dental technician services will be in demand, as dentists work to improve the aesthetics and function of patients' teeth.

On the other hand, baby boomers and their children are more likely to retain their teeth than previous generations. This is due to increased visits to dentists, increased use of fluoride, and more dental health education. These factors will likely lead to a decrease in the number of full and partial dentures and other prosthetics used to replace missing teeth and will temper demand for the technicians that make them.

Note: All Occupations includes all occupations in the U.S. Economy.

Source: U.S. Bureau of Labor Statistics, Employment Projections program

Employment projections data for dental laboratory technicians, 2010-20

				Change,	2010-20	
Occupational Title	SOC Code	Employment, 2010	Projected Employment, 2020	Percent	Numeric	Employment by Industry
Dental Laboratory Technicians	51-9081	40,900	41,200	1	300	[XLS]
SOURCE: U.S. Bureau of Labor Statistics, Employment Projections program						

NADL Fights Unskilled Labor Label for Technicians

A federal shuffle has reclassified dental technicians as unskilled labor, a false label that could have far-reaching effects on the profession. NADL is lobbying the U.S. Department of Labor to restore technicians to the skilled labor category.

"The proposed classification change for dental technicians to another occupational rating could adversely affect the ability of economic

- Typical Entry-Level Education: High school diploma or equivalent
- Previous Work Experience in a Related Occupation: None
- State Licensing: Yes (Editor's Note: A few states require laboratories or technicians to be registered or certified.)

Thank you for your kind attention